Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.540
Filtrar
1.
Sci Rep ; 14(1): 9515, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664464

RESUMEN

Stroke, a major global health concern often rooted in cardiac dynamics, demands precise risk evaluation for targeted intervention. Current risk models, like the CHA 2 DS 2 -VASc score, often lack the granularity required for personalized predictions. In this study, we present a nuanced and thorough stroke risk assessment by integrating functional insights from cardiac magnetic resonance (CMR) with patient-specific computational fluid dynamics (CFD) simulations. Our cohort, evenly split between control and stroke groups, comprises eight patients. Utilizing CINE CMR, we compute kinematic features, revealing smaller left atrial volumes for stroke patients. The incorporation of patient-specific atrial displacement into our hemodynamic simulations unveils the influence of atrial compliance on the flow fields, emphasizing the importance of LA motion in CFD simulations and challenging the conventional rigid wall assumption in hemodynamics models. Standardizing hemodynamic features with functional metrics enhances the differentiation between stroke and control cases. While standalone assessments provide limited clarity, the synergistic fusion of CMR-derived functional data and patient-informed CFD simulations offers a personalized and mechanistic understanding, distinctly segregating stroke from control cases. Specifically, our investigation reveals a crucial clinical insight: normalizing hemodynamic features based on ejection fraction fails to differentiate between stroke and control patients. Differently, when normalized with stroke volume, a clear and clinically significant distinction emerges and this holds true for both the left atrium and its appendage, providing valuable implications for precise stroke risk assessment in clinical settings. This work introduces a novel framework for seamlessly integrating hemodynamic and functional metrics, laying the groundwork for improved predictive models, and highlighting the significance of motion-informed, personalized risk assessments.


Asunto(s)
Atrios Cardíacos , Hemodinámica , Hidrodinámica , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/fisiopatología , Femenino , Masculino , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/diagnóstico por imagen , Persona de Mediana Edad , Medición de Riesgo/métodos , Anciano , Simulación por Computador , Modelos Cardiovasculares , Imagen por Resonancia Cinemagnética/métodos
2.
Catheter Cardiovasc Interv ; 103(6): 924-933, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597297

RESUMEN

BACKGROUND: Percutaneous pulmonary valve implantation (PPVI) is a non-surgical treatment for right ventricular outflow tract (RVOT) dysfunction. During PPVI, a stented valve, delivered via catheter, replaces the dysfunctional pulmonary valve. Stent oversizing allows valve anchoring within the RVOT, but overexpansion can intrude on the surrounding structures. Potentially dangerous outcomes include aortic valve insufficiency (AVI) from aortic root (AR) distortion and myocardial ischemia from coronary artery (CA) compression. Currently, risks are evaluated via balloon angioplasty/sizing before stent deployment. Patient-specific finite element (FE) analysis frameworks can improve pre-procedural risk assessment, but current methods require hundreds of hours of high-performance computation. METHODS: We created a simplified method to simulate the procedure using patient-specific FE models for accurate, efficient pre-procedural PPVI (using balloon expandable valves) risk assessment. The methodology was tested by retrospectively evaluating the clinical outcome of 12 PPVI candidates. RESULTS: Of 12 patients (median age 14.5 years) with dysfunctional RVOT, 7 had native RVOT and 5 had RV-PA conduits. Seven patients had undergone successful RVOT stent/valve placement, three had significant AVI on balloon testing, one had left CA compression, and one had both AVI and left CA compression. A model-calculated change of more than 20% in lumen diameter of the AR or coronary arteries correctly predicted aortic valve sufficiency and/or CA compression in all the patients. CONCLUSION: Agreement between FE results and clinical outcomes is excellent. Additionally, these models run in 2-6 min on a desktop computer, demonstrating potential use of FE analysis for pre-procedural risk assessment of PPVI in a clinically relevant timeframe.


Asunto(s)
Cateterismo Cardíaco , Análisis de Elementos Finitos , Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Modelos Cardiovasculares , Modelación Específica para el Paciente , Diseño de Prótesis , Válvula Pulmonar , Humanos , Válvula Pulmonar/fisiopatología , Válvula Pulmonar/cirugía , Válvula Pulmonar/diagnóstico por imagen , Implantación de Prótesis de Válvulas Cardíacas/instrumentación , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Medición de Riesgo , Adolescente , Resultado del Tratamiento , Factores de Riesgo , Masculino , Niño , Estudios Retrospectivos , Femenino , Cateterismo Cardíaco/efectos adversos , Cateterismo Cardíaco/instrumentación , Adulto Joven , Valor Predictivo de las Pruebas , Hemodinámica , Stents , Insuficiencia de la Válvula Pulmonar/fisiopatología , Insuficiencia de la Válvula Pulmonar/cirugía , Insuficiencia de la Válvula Pulmonar/diagnóstico por imagen , Insuficiencia de la Válvula Pulmonar/etiología , Obstrucción del Flujo Ventricular Externo/fisiopatología , Obstrucción del Flujo Ventricular Externo/etiología , Obstrucción del Flujo Ventricular Externo/diagnóstico por imagen , Toma de Decisiones Clínicas , Adulto
3.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38626731

RESUMEN

To localize the unusual cardiac activities non-invasively, one has to build a prior forward model that relates the heart, torso, and detectors. This model has to be constructed to mathematically relate the geometrical and functional activities of the heart. Several methods are available to model the prior sources in the forward problem, which results in the lead field matrix generation. In the conventional technique, the lead field assumed the fixed prior sources, and the source vector orientations were presumed to be parallel to the detector plane with the unit strength in all directions. However, the anomalies cannot always be expected to occur in the same location and orientation, leading to misinterpretation and misdiagnosis. To overcome this, the work proposes a new forward model constructed using the VCG signals of the same subject. Furthermore, three transformation methods were used to extract VCG in constructing the time-varying lead fields to steer to the orientation of the source rather than just reconstructing its activities in the inverse problem. In addition, the unit VCG loop of the acute ischemia patient was extracted to observe the changes compared to the normal subject. The abnormality condition was achieved by delaying the depolarization time by 15ms. The results involving the unit vectors of VCG demonstrated the anisotropic nature of cardiac source orientations, providing information about the heart's electrical activity.


Asunto(s)
Electrocardiografía , Corazón , Humanos , Electrocardiografía/métodos , Corazón/fisiología , Algoritmos , Modelos Cardiovasculares , Simulación por Computador , Isquemia Miocárdica/diagnóstico , Procesamiento de Señales Asistido por Computador
4.
Arterioscler Thromb Vasc Biol ; 44(5): 1065-1085, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572650

RESUMEN

Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.


Asunto(s)
Prótesis Vascular , Hemodinámica , Humanos , Animales , Modelos Cardiovasculares , Falla de Prótesis , Estrés Mecánico , Fenómenos Biomecánicos , Mecanotransducción Celular , Implantación de Prótesis Vascular/efectos adversos , Diseño de Prótesis , Oclusión de Injerto Vascular/fisiopatología , Oclusión de Injerto Vascular/etiología , Remodelación Vascular
5.
PLoS One ; 19(4): e0300326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626003

RESUMEN

This study aimed to reduce the risk of graft occlusion by evaluating the two-phase flow of blood and LDL nanoparticles in coronary artery grafts. The study considered blood as an incompressible Newtonian fluid, with the addition of LDL nanoparticles, and the artery wall as a porous medium. Two scenarios were compared, with constant inlet velocity (CIV) and other with pulsatile inlet velocity (PIV), with LDL nanoparticles experiencing drag, wall-induced lift, and induced Saffman lift forces, or drag force only. The study also evaluated the concentration polarization of LDLs (CP of LDLs) near the walls, by considering the artery wall with and without permeation. To model LDL nanoparticles, the study randomly injected 100, 500, and 1000 nanoparticles in three release states at each time step, using different geometries. Numerical simulations were performed using COMSOL software, and the results were presented as relative collision of nanoparticles to the walls in tables, diagrams, and shear stress contours. The study found that a graft implantation angle of 15° had the most desirable conditions compared to larger angles, in terms of nanoparticle collision with surfaces and occlusion. The nanoparticle release modes behaved similarly in terms of collision with the surfaces. A difference was observed between CIV and PIV. Saffman lift and wall-induced lift forces having no effect, possibly due to the assumption of a porous artery wall and perpendicular outlet flow. In case of permeable artery walls, relative collision of particles with the graft wall was larger, suggesting the effect of CP of LDLs.


Asunto(s)
Bahías , Vasos Coronarios , Simulación por Computador , Porosidad , Modelos Cardiovasculares , Velocidad del Flujo Sanguíneo , Estrés Mecánico
6.
Comput Methods Programs Biomed ; 249: 108144, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569255

RESUMEN

OBJECTIVE: Iatrogenic coronary artery dissection is a complication of coronary intimal injury and dissection due to improper catheter manipulation. The impact of tear direction on the prognosis of coronary artery dissection (CAD) remains unclear. This study examines the hemodynamic effects of different tear directions (transverse and longitudinal) of CAD and evaluates the risk of thrombosis, rupture and further dilatation of CAD. METHODS: Two types of CAD models (Type I: transverse tear, Type II: longitudinal tear) were reconstructed from the aorto-coronary CTA dataset of 8 healthy cases. Four WSS-based indicators were analyzed, including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), and cross flow index (CFI). A thrombus growth model was also introduced to predict the trend of thrombus growth in CAD with two different tear directions. RESULTS: For most of the WSS-based indicators, including TAWSS, RRT, and CFI, no statistically significant differences were observed across the CAD models with varying tear directions, except for OSI, where a significant difference was noted (p < 0.05). Meanwhile, in terms of thrombus growth, the thrombus growing at the tear of the Type I (transverse tear) CAD model extended into the true lumen earlier than that of the Type II (longitudinal tear) model. CONCLUSIONS: Numerical simulations suggest that: (1) The CAD with transverse tear have a high risk of further tearing of the dissection at the distal end of the tear. (2) The CAD with longitudinal tear create a hemodynamic environment characterized by low TAWSS and high OSI in the false lumen, which may additionally increase the risk of vessel wall injury. (3) The CAD with transverse tear may have a higher risk of thrombosis and coronary obstruction and myocardial ischemia in the early phase of the dissection.


Asunto(s)
Disección Aórtica , Trombosis , Humanos , Vasos Coronarios/diagnóstico por imagen , Modelos Cardiovasculares , Hemodinámica , Enfermedad Crónica , Trombosis/etiología , Estrés Mecánico
7.
Chaos ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629790

RESUMEN

The heart beats are due to the synchronized contraction of cardiomyocytes triggered by a periodic sequence of electrical signals called action potentials, which originate in the sinoatrial node and spread through the heart's electrical system. A large body of work is devoted to modeling the propagation of the action potential and to reproducing reliably its shape and duration. Connection of computational modeling of cells to macroscopic phenomenological curves such as the electrocardiogram has been also intense, due to its clinical importance in analyzing cardiovascular diseases. In this work, we simulate the dynamics of action potential propagation using the three-variable Fenton-Karma model that can account for both normal and damaged cells through a the spatially inhomogeneous voltage diffusion coefficient. We monitor the action potential propagation in the cardiac tissue and calculate the pseudo-electrocardiogram that reproduces the R and T waves. The R-wave amplitude varies according to a double exponential law as a function of the (spatially homogeneous, for an isotropic tissue) diffusion coefficient. The addition of spatial inhomogeneity in the diffusion coefficient by means of a defected region representing damaged cardiac cells may result in T-wave inversion in the calculated pseudo-electrocardiogram. The transition from positive to negative polarity of the T-wave is analyzed as a function of the length and the depth of the defected region.


Asunto(s)
Arritmias Cardíacas , Modelos Cardiovasculares , Humanos , Electrocardiografía , Potenciales de Acción/fisiología , Miocitos Cardíacos
8.
J R Soc Interface ; 21(213): 20230656, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38593843

RESUMEN

Peripheral arterial disease (PAD) and abdominal aortic aneurysms (AAAs) often coexist and pose significant risks of mortality, yet their mutual interactions remain largely unexplored. Here, we introduce a fluid mechanics model designed to simulate the haemodynamic impact of PAD on AAA-associated risk factors. Our focus lies on quantifying the uncertainty inherent in controlling the flow rates within PAD-affected vessels and predicting AAA risk factors derived from wall shear stress. We perform a sensitivity analysis on nine critical model parameters through simulations of three-dimensional blood flow within a comprehensive arterial geometry. Our results show effective control of the flow rates using two-element Windkessel models, although specific outlets need attention. Quantities of interest like endothelial cell activation potential (ECAP) and relative residence time are instructive for identifying high-risk regions, with ECAP showing greater reliability and adaptability. Our analysis reveals that the uncertainty in the quantities of interest is 187% of that of the input parameters. Notably, parameters governing the amplitude and frequency of the inlet velocity exert the strongest influence on the risk factors' variability and warrant precise determination. This study forms the foundation for patient-specific simulations involving PAD and AAAs which should ultimately improve patient outcomes and reduce associated mortality rates.


Asunto(s)
Aneurisma de la Aorta Abdominal , Enfermedad Arterial Periférica , Humanos , Reproducibilidad de los Resultados , Incertidumbre , Modelos Cardiovasculares , Hemodinámica , Estrés Mecánico
9.
Sci Rep ; 14(1): 8194, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589554

RESUMEN

Accurate modeling of cerebral hemodynamics is crucial for better understanding the hemodynamics of stroke, for which computational fluid dynamics (CFD) modeling is a viable tool to obtain information. However, a comprehensive study on the accuracy of cerebrovascular CFD models including both transient arterial pressures and flows does not exist. This study systematically assessed the accuracy of different outlet boundary conditions (BCs) comparing CFD modeling and an in-vitro experiment. The experimental setup consisted of an anatomical cerebrovascular phantom and high-resolution flow and pressure data acquisition. The CFD model of the same cerebrovascular geometry comprised five sets of stationary and transient BCs including established techniques and a novel BC, the phase modulation approach. The experiment produced physiological hemodynamics consistent with reported clinical results for total cerebral blood flow, inlet pressure, flow distribution, and flow pulsatility indices (PI). The in-silico model instead yielded time-dependent deviations between 19-66% for flows and 6-26% for pressures. For cerebrovascular CFD modeling, it is recommended to avoid stationary outlet pressure BCs, which caused the highest deviations. The Windkessel and the phase modulation BCs provided realistic flow PI values and cerebrovascular pressures, respectively. However, this study shows that the accuracy of current cerebrovascular CFD models is limited.


Asunto(s)
Hemodinámica , Hidrodinámica , Velocidad del Flujo Sanguíneo , Presión Arterial , Simulación por Computador , Circulación Cerebrovascular , Modelos Cardiovasculares
10.
Math Biosci Eng ; 21(2): 1806-1818, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38454661

RESUMEN

BACKGROUND: Pulmonary artery stenosis endangers people's health. Quantitative pulmonary pressure ratio (QPPR) is very important for clinicians to quickly diagnose diseases and develop treatment plans. OBJECTIVE: Our purpose of this paper is to investigate the effects of different degrees (50% and 80%) of pulmonary artery stenosis on QPPR. METHODS: An idealized model is established based on the normal size of human pulmonary artery. The hemodynamic governing equations are solved using fluid-structure interaction. RESULTS: The results show that the QPPR decreases with the increase of stenosis degree, and it is closely related to the pressure drop at both ends of stenosis. Blood flow velocity and wall shear stress are sensitive to the stenosis degree. When the degree of stenosis is 80%, the amplitude of changes of blood flow velocity and wall shear stress at both ends of stenosis is lower. CONCLUSIONS: The results suggest that the degree of pulmonary artery stenosis has a significant impact on QPPR and hemodynamic changes. This study lays a theoretical foundation for further study of QPPR.


Asunto(s)
Estenosis de Arteria Pulmonar , Humanos , Constricción Patológica , Simulación por Computador , Hemodinámica , Velocidad del Flujo Sanguíneo/fisiología , Modelos Cardiovasculares , Estrés Mecánico
11.
Curr Top Dev Biol ; 156: 19-50, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556423

RESUMEN

The cardiovascular development in vertebrates evolves in response to genetic and mechanical cues. The dynamic interplay among mechanics, cell biology, and anatomy continually shapes the hydraulic networks, characterized by complex, non-linear changes in anatomical structure and blood flow dynamics. To better understand this interplay, a diverse set of molecular and computational tools has been used to comprehensively study cardiovascular mechanobiology. With the continual advancement of computational capacity and numerical techniques, cardiovascular simulation is increasingly vital in both basic science research for understanding developmental mechanisms and disease etiologies, as well as in clinical studies aimed at enhancing treatment outcomes. This review provides an overview of computational cardiovascular modeling. Beginning with the fundamental concepts of computational cardiovascular modeling, it navigates through the applications of computational modeling in investigating mechanobiology during cardiac development. Second, the article illustrates the utility of computational hemodynamic modeling in the context of treatment planning for congenital heart diseases. It then delves into the predictive potential of computational models for elucidating tissue growth and remodeling processes. In closing, we outline prevailing challenges and future prospects, underscoring the transformative impact of computational cardiovascular modeling in reshaping cardiovascular science and clinical practice.


Asunto(s)
Cardiopatías Congénitas , Corazón , Animales , Simulación por Computador , Corazón/fisiología , Hemodinámica , Modelos Cardiovasculares
12.
Int J Artif Organs ; 47(4): 269-279, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38506302

RESUMEN

Centrifugal blood pumps can be used for treating heart failure patients. However, pump thrombosis has remained one of the complications that trouble clinical treatment. This study analyzed the effect of impeller shroud on the thrombosis risk of the blood pump, and predicted areas prone to thrombosis. Multi-constituent transport equations were presented, considering mechanical activation and biochemical activation. It was found that activated platelets concentration can increase with shear stress and adenosine diphosphate(ADP) concentration increasing, and the highest risk of thrombosis inside the blood pump was under extracorporeal membrane oxygenation (ECMO) mode. Under the same condition, ADP concentration and thrombosis index of semi-shroud impeller can increase by 7.3% and 7.2% compared to the closed-shroud impeller. The main reason for the increase in thrombosis risk was owing to elevated scalar shear stress and more coagulation promoting factor-ADP released. The regions with higher thrombosis potential were in the center hole, top and bottom clearance. As a novelty, the findings revealed that impeller shroud can influence mechanical and biochemical activation factors. It is useful for identifying potential risk regions of thrombus formation based on relative comparisons.


Asunto(s)
Corazón Auxiliar , Estrés Mecánico , Trombosis , Trombosis/etiología , Trombosis/fisiopatología , Trombosis/sangre , Humanos , Corazón Auxiliar/efectos adversos , Activación Plaquetaria , Modelos Cardiovasculares , Adenosina Difosfato/metabolismo , Diseño de Prótesis , Oxigenación por Membrana Extracorpórea/efectos adversos , Factores de Riesgo , Plaquetas/metabolismo
13.
Proc Inst Mech Eng H ; 238(4): 444-454, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503717

RESUMEN

In this paper, a two-way fluid-structure coupling model is developed to simulate and analyze the hemodynamic process based on dynamic coronary angiography, and examine the influence of different hemodynamic parameters on coronary arteries in typical coronary stenosis lesions. Using the measured FFR pressure data of a patient, the pressure-time function curve is fitted to ensure the accuracy of the boundary conditions. The average error of the simulation pressure results compared to the test data is 6.74%. In addition, the results related to blood flow, pressure contour and wall shear stress contour in a typical cardiac cycle are obtained by simulation analysis. These results are found to be in good agreement with the laws of the real cardiac cycle, which verifies the rationality of the simulation. In conclusion, based on the modeling and hemodynamic simulation analysis process of dynamic coronary angiography, this paper proposes a method to assist the analysis and evaluation of coronary hemodynamic and functional parameters, which has certain practical significance.


Asunto(s)
Estenosis Coronaria , Modelos Cardiovasculares , Humanos , Hemodinámica , Simulación por Computador , Vasos Coronarios/diagnóstico por imagen , Estenosis Coronaria/diagnóstico por imagen
14.
Sci Rep ; 14(1): 6941, 2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521832

RESUMEN

Univentricular heart anomalies represent a group of severe congenital heart defects necessitating early surgical intervention in infancy. The Fontan procedure, the final stage of single-ventricle palliation, establishes a serial connection between systemic and pulmonary circulation by channeling venous return to the lungs. The absence of the subpulmonary ventricle in this peculiar circulation progressively eventuates in failure, primarily due to chronic elevation in inferior vena cava (IVC) pressure. This study experimentally validates the effectiveness of an intracorporeally-powered venous ejector pump (VEP) in reducing IVC pressure in Fontan patients. The VEP exploits a fraction of aortic flow to create a jet-venturi effect for the IVC, negating the external power requirement and driveline infections. An invitro Fontan mock-up circulation loop is developed and the impact of VEP design parameters and physiological conditions is assessed using both idealized and patient-specific total cavopulmonary connection (TCPC) phantoms. The VEP performance in reducing IVC pressure exhibited an inverse relationship with the cardiac output and extra-cardiac conduit (ECC) size and a proportional relationship with the transpulmonary pressure gradient (TPG) and mean arterial pressure (MAP). The ideal VEP with fail-safe features provided an IVC pressure drop of 1.82 ± 0.49, 2.45 ± 0.54, and 3.12 ± 0.43 mm Hg for TPG values of 6, 8, and 10 mm Hg, respectively, averaged over all ECC sizes and cardiac outputs. Furthermore, the arterial oxygen saturation was consistently maintained above 85% during full-assist mode. These results emphasize the potential utility of the VEP to mitigate elevated venous pressure in Fontan patients.


Asunto(s)
Procedimiento de Fontan , Cardiopatías Congénitas , Corazón Univentricular , Humanos , Hemodinámica , Arteria Pulmonar , Ventrículos Cardíacos , Cardiopatías Congénitas/cirugía , Modelos Cardiovasculares
15.
Crit Rev Biomed Eng ; 52(3): 1-16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523438

RESUMEN

The present work is focused on the study of hemodynamic characteristics for tortuous arteries/veins. Tortuosity in arteries/veins is defined by introducing waviness in the wall of the tube. Analysis is further extended for bifurcated veins with and without wavy walls. Waviness is defined by two geometric parameters; pitch and depth of the wave. Four different combinations of pitch and depth are studied and compared with a plain straight wall. The present study is carried out numerically by using a computational fluid dynamics tool. Hemodynamics for a steady flow of blood is investigated through pressure, velocity, and wall shear stress distribution. Waviness in the wall of arteries/veins creates a recirculation zone at the crest and trough of the wall. Occurrence of the recirculation zone leads to reduction in velocity which in turn reduces wall shear stress. Variation in the magnitude of the velocity and corresponding wall shear stress at the crest and trough of the wavy wall depends on the pitch and depth of the artery/veins (tube).


Asunto(s)
Arterias , Modelos Cardiovasculares , Humanos , Velocidad del Flujo Sanguíneo , Simulación por Computador , Hemodinámica , Estrés Mecánico
16.
Sci Rep ; 14(1): 6762, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514703

RESUMEN

The failure of the aortic heart valve is common, resulting in deterioration of the pumping function of the heart. For the end stage valve failure, bi-leaflet mechanical valve (most popular artificial valve) is implanted. However, due to its non-physiological behaviour, a significant alteration is observed in the normal haemodynamics of the aorta. While in-vivo experimentation of a human heart valve (native and artificial) is a formidable task, in-silico study using computational fluid dynamics (CFD) with fluid structure interaction (FSI) is an effective and economic tool for investigating the haemodynamics of natural and artificial heart valves. In the present work, a haemodynamic model of a natural and mechanical heart valve has been developed using meshless particle-based smoothed particle hydrodynamics (SPH). In order to further enhance its clinical relevance, this study employs a patient-specific vascular geometry and presents a successful validation against traditional finite volume method and 4D magnetic resonance imaging (MRI) data. The results have demonstrated that SPH is ideally suited to simulate the heart valve function due to its Lagrangian description of motion, which is a favourable feature for FSI. In addition, a novel methodology for the estimation of the wall shear stress (WSS) and other related haemodynamic parameters have been proposed from the SPH perspective. Finally, a detailed comparison of the haemodynamic parameters has been carried out for both native and mechanical aortic valve, with a particular emphasis on the clinical risks associated with the mechanical valve.


Asunto(s)
Hidrodinámica , Modelos Cardiovasculares , Humanos , Simulación por Computador , Aorta/fisiología , Válvula Aórtica/fisiología , Estrés Mecánico , Hemodinámica/fisiología
17.
Comput Biol Med ; 171: 108033, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430739

RESUMEN

BACKGROUND AND OBJECTIVE: Atrioventricular valve disease is a common cause of heart failure, and successful surgical or interventional outcomes are crucial. Patient-specific fluid-structure interaction (FSI) modeling may provide valuable insights into valve dynamics and guidance of valve repair strategies. However, lack of validation has kept FSI modeling from clinical implementation. Therefore, this study aims to validate FSI simulations against in vitro benchmarking data, based on clinically relevant parameters for evaluating heart valve disease. METHODS: An FSI model that mimics the left heart was developed. The domain included a deformable mitral valve of different stiffnesses run with different inlet velocities. Five different cases were simulated and compared to in vitro data based on the pressure difference across the valve, the valve opening, and the velocity in the flow domain. RESULTS: The simulations underestimate the pressure difference across the valve by 6.8-14 % compared to catheter measurements. Evaluation of the valve opening showed an underprediction of 5.4-7.3 % when compared to cine MRI, 2D Echo, and 3D Echo data. Additionally, the simulated velocity through the valve showed a 7.9-8.4 % underprediction in relation to Doppler Echo measurements. Qualitative assessment of the velocity profile in the ventricle and the streamlines of the flow in the domain showed good agreement of the flow behavior. CONCLUSIONS: Parameters relevant to the diagnosis of heart valve disease estimated by FSI simulations showed good agreement when compared to in vitro benchmarking data, with differences small enough not to affect the grading of heart valve disease. The FSI model is thus deemed good enough for further development toward patient-specific cases.


Asunto(s)
Enfermedades de las Válvulas Cardíacas , Modelos Cardiovasculares , Humanos , Modelación Específica para el Paciente , Ultrasonografía Doppler , Válvula Mitral/diagnóstico por imagen , Enfermedades de las Válvulas Cardíacas/diagnóstico por imagen , Hemodinámica/fisiología , Simulación por Computador
18.
Phys Rev E ; 109(2-1): 024410, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491656

RESUMEN

Intracellular ions, including sodium (Na^{+}), calcium (Ca^{2+}), and potassium (K^{+}), etc., accumulate slowly after a change of the state of the heart, such as a change of the heart rate. The goal of this study is to understand the roles of slow ion accumulation in the genesis of cardiac memory and complex action-potential duration (APD) dynamics that can lead to lethal cardiac arrhythmias. We carry out numerical simulations of a detailed action potential model of ventricular myocytes under normal and diseased conditions, which exhibit memory effects and complex APD dynamics. We develop a low-dimensional iterated map (IM) model to describe the dynamics of Na^{+}, Ca^{2+}, and APD and use it to uncover the underlying dynamical mechanisms. The development of the IM model is informed by simulation results under the normal condition. We then use the IM model to perform linear stability analyses and computer simulations to investigate the bifurcations and complex APD dynamics, which depend on the feedback loops between APD and intracellular Ca^{2+} and Na^{+} concentrations and the steepness of the APD response to the ion concentrations. When the feedback between APD and Ca^{2+} concentration is positive, a Hopf bifurcation leading to periodic oscillatory behavior occurs as the steepness of the APD response to the ion concentrations increases. The negative feedback loop between APD and Na^{+} concentration is required for the Hopf bifurcation. When the feedback between APD and Ca^{2+} concentration is negative, period-doubling bifurcations leading to high periodicity and chaos occurs. In this case, Na^{+} accumulation plays little role in the dynamics. Finally, we carry out simulations of the detailed action potential model under two diseased conditions, which exhibit steep APD responses to ion concentrations. Under both conditions, Hopf bifurcations leading to slow oscillations or period-doubling bifurcations leading to high periodicity and chaotic APD dynamics occur, depending on the strength of the ion pump-Na^{+}-Ca^{2+} exchanger. Using functions reconstructed from the simulation data, the IM model accurately captures the bifurcations and dynamics under the two diseased conditions. In conclusion, besides using computer simulations of a detailed high-dimensional action-potential model to investigate the effects of slow ion accumulation and short-term memory on bifurcations and genesis of complex APD dynamics in cardiac myocytes under diseased conditions, this study also provides a low-dimensional mathematical tool, i.e., the IM model, to allow stability analyses for uncovering the underlying mechanisms.


Asunto(s)
Cardiopatías , Modelos Cardiovasculares , Humanos , Potenciales de Acción/fisiología , Miocitos Cardíacos , Iones
19.
Biomed Phys Eng Express ; 10(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447220

RESUMEN

Carotid endarterectomy is the main way to combat atherosclerosis of the carotid arteries, which disrupts cerebral circulation. The generally accepted marker of atherogenesis risk are hemodynamic indices associated with near-wall shear stress. The purpose of the work is to conduct a comparative analysis of hemodynamic indices in various carotid bifurcation models. The influence of a virtual change in the geometric shape of the model in order to optimize hemodynamic indices is also being studied. On the basis of computed angiography data, carotid bifurcation models are constructed, in which critical zones of hemodynamic indices are built using computational fluid dynamics. A comparative analysis of the critical zones for different classes of models is carried out. Comparison of averaged indices for critical zones between 'normal' and post-operative groups gave more than 5-x worse results for the latter. The same results for the near-bifurcation parts of the zones give a 25% better result for postoperative models. Virtual 'removal' of insignificant plaques leads to a deterioration of the indices of up to 40% in the places of the plaque's former location. The described method makes it possible to build the indices critical zones and compare them for various types of models. A technique for virtual changing the shape of a vessel (virtual surgery) is proposed. The novelty of the approach lies in the use for comparative analysis both real vessel models and hypothetical 'improved' virtual ones, as well in the proposed division of post-operative model's critical zones into subzones of different genesis.


Asunto(s)
Endarterectomía Carotidea , Endarterectomía Carotidea/efectos adversos , Endarterectomía Carotidea/métodos , Modelos Cardiovasculares , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/cirugía , Hemodinámica
20.
Med Eng Phys ; 125: 104124, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38508801

RESUMEN

BACKGROUND: The frequent occurrence of thromboembolic cerebral events continues to limit the widespread implementation of Ventricular Assist Devices (VAD) despite continued advancements in VAD design and anti-coagulation treatments. Recent studies point to the optimal positioning of the outflow graft (OG) as a potential mitigator of post implantation thromboembolism. OBJECTIVE: This study aims to examine the tailoring of the OG implantation orientation with the goal of minimizing the number of thrombi reaching the cerebral vessels by means of a formal shape optimization scheme incorporated into a multi-scale hemodynamics analysis. METHODS: A 3-D patient-specific computational fluid dynamics model is loosely coupled in a two-way manner to a 0-D lumped parameter model of the peripheral circulation. A Lagrangian particle-tracking scheme models and tracks thrombi as non-interacting solid spheres. The loose coupling between CFD and LPM is integrated into a geometric shape optimization scheme which aims to optimize an objective function that targets a drop in cerebral embolization, and an overall reduction in particle residence times. RESULTS: The results elucidate the importance of OG anastomosis orientation and placement particularly in the case that studied particle release from the OG, as a fivefold decrease in cerebral embolization was observed between the optimal and non-optimal implantations. Another case considered particle release from the ventricle and aortic root walls, in which optimal implantation was achieved with a shallow insertion angle. Particle release from all three origins was investigated in the third case, demonstrating that the optimal configurations were generally characterized by VAD flow directed along the central lumen of the aortic arch. Because optimal configurations depended on the anatomic origin of the thrombus, it is important to determine, in clinical studies, the most likely sites of thrombus formation in VAD patients.


Asunto(s)
Corazón Auxiliar , Trombosis , Humanos , Cánula , Aorta , Aorta Torácica , Hemodinámica , Modelos Cardiovasculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...